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ABSTRACT 
A decade long experience shows that the monitoring of the performance of public and private monopolies 
in South America is proving to be the hard part of the reform. The operators control most of the specific 
information needed for regulatory purposes and have little interest in volunteering their dissemination 
unless they have an incentive to do so. This paper argues that, in spite of, and maybe because of, a much 
weaker information base and governance structure, Latin America’s electricity sector could rely on an 
approach that relies on performance rankings based on comparative efficiency measures. The paper shows 
that with the rather modest data currently available publicly, such an approach could already yield useful 
results. It provides estimates of efficiency levels in South America’s main distribution companies between 
1994 and 2000. Moreover, it illustrates how relatively simple tests can be used by regulators to check the 
robustness of their results and strengthen their position at regulatory hearings.  
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INTRODUCTION 

Following the process initiated by Chile about 20 years ago, many South American 

countries have transformed their electricity sector. The changes started with a restructuring to 

increase competition in and for the markets. They entailed an unbundling of electricity 

generation, transmission and distribution and resulted in generally competitive generation 

markets but maintained monopolies for transmission and distribution which were generally 

auctioned to private operators. Whenever possible, reformers also broke up horizontally the 

former national distribution companies into several regional monopolies to reduce the strength of 

the residual monopolies. In most countries, these changes were associated with the creation of 

new regulatory agencies responsible for the monitoring of the performance of the residual public 

and private monopolies.  

A decade long experience shows that this monitoring is proving to be the hard part of the 

reform. The private operators control most of the specific information needed for regulatory 

purposes and have little interest in volunteering their dissemination unless they have an incentive 

to do so. Most of the regulators have tried to mandate the publication of information. Many have 

also relied on public audiences to promote public debates of relevant information. The results of 

these approaches to reducing the information asymmetry between regulators and operators have 

been mixed at best.1  

This paper argues that in spite of, and maybe because of, a much weaker information base 

and governance structure, Latin America’s electricity sector could, thanks to a much more 

effective cross-country coordination, reduce the information asymmetry by relying on 



 3

performance rankings based on comparative efficiency measures, as achieved with some success 

by various regulators in England and recently by the Dutch electricity regulator. While never 

spelled out quite in the specific terms adopted here, what the approach essentia lly achieves is a 

shift of the burden of proof for justification of bad performance from the regulator to the 

operators by relying on competition between markets more systematically.2 The authorized levels 

of recoverable costs or the performance levels recognized by the regulators to assess the share of 

efficiency gains to be passed on to consumers can be estimated from best practice benchmarks 

obtained by comparing performance across markets. Unless the operators can prove with the 

appropriate information that their performance is sub-par for specific reasons they will have to 

comply with the regulatory assessment of their performance based on the approaches suggested 

here.  

Coordination is needed because this benchmarking approach to regulation, which further 

promotes competition between markets, requires the best possible assessments of cost or 

production frontiers across countries and this in turn requires a minimum of coordination in terms 

of the definition and measurement of the indicators to be used in the process.  As large as 

possible a number of operators must be monitored over 3-4 years at least to maximize the quality 

of the data available.  

The paper shows that with the rather modest data currently available publicly, such an 

approach could already yield useful results. It provides estimates of efficiency levels in South 

                                                                                                                                                              
1 A theoretical approach to this regulatory problem, in terms of principal-agent games, can be found in Bogetoft 

(1997), where the selection of a efficiency measurement procedure appears as the Nash equilibrium of a regulatory 

game.  

2  This approach has also been advocated for the Mexican Port sector by Estache, Gonzalez and Trujillo (2002), for 

instance, and more generally in Coelli, Estache, Perelman and Trujillo (2002).   
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America’s main distribution companies between 1994 and 2000. Moreover, it illustrates how 

relatively simple tests can be used by regulators to check the robustness of their results and 

strengthen their position at regulatory hearings. This is important since efficiency estimates used 

by regulators to shift the burden of proof on the operators are likely to be contested routinely by 

unhappy operators. The quality of the regulatory assessments should be such that improvements 

in efficiency measures would only come from additional information provided by the operators 

trying to make their case rather than from improvements in the use of the existing information.   

The paper is organized as follows. Section 1 specifies the model which could be used by 

coordinated regulators and argues for a production function rather than a cost function. Section 2 

discusses the data currently available to test the chosen model and presents the main 

characteristics of the 39 distribution companies covered by the data sample. Section 3 covers the 

various estimation procedures among which to pick. Section 4 explains the test used to check the 

robustness of the results and discusses the various levels of confidence with which the regulators 

can argue their case.  In particular, this section makes the case for at least a mild form of 

international yardstick competition between electricity distribution companies in South America. 

Section 5 concludes.  

 

1. THE SPECIFICATION OF THE MODEL 

The main challenge for any regulator is to make the most of the information available. This 

basic, quite obvious, observation has already been internalized by most applied economists 

working on efficiency measures for electricity companies. This means that pragmatism will often 

rule over strict theory. While the theory would argue for a detailed structural model accounting 

for all possible factors, pragmatism implies that the best one can hope to achieve in practice is to 

estimate a single equation production function.  
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The estimation of a cost function (a valid alternative 3) involves an assumption about firms’ 

behavior, namely profit maximization. However, whenever there is public ownership, the firms, 

in general, will not seek profit maximization as their main goal. As Pestieau and Tulkens (1990) 

argue, public enterprises do not share the same objectives and constraints as their private 

counterparts, so their relative performance should only be compared on the basis of a production 

relationship which serves as a common ground. Moreover, the estimation of cost frontiers 

involves the utilization of variables measured in monetary units, which could be a serious 

problem if one wishes to make international comparisons. Production functions, instead, only 

require variables measured in physical units (i.e. homogeneous among countries –or at least much 

more homogeneous). Given that we are estimating an international frontier and that the sample 

includes private and public firms as well, we choose to estimate a production function. 

Having decided upon the relationship to be estimated, we still have to make a decision over 

the variables that should be included in the analysis. What are the outputs of the industry? What 

are the inputs? Are there variables beyond the firms’ control? 

The first issue is to decide which output to focus on. According to Neuberg (1977), both 

number of customers served and total energy sold qualify as potential outputs in this sector. In 

order to decide between them, some regulatory insights must be taken into account. In particular, 

it is important to note that energy delivered to final customers is not really exogenous, especially 

in non-regulated public utilities. That is, the utility is not always compelled to provide its 

customers with whatever quantities they desire at given prices. Number of customers, on the 

other hand, cannot be controlled by utilities since in general everybody has the right to be 

connected to the local distributor. Therefore, energy delivered is a better output measure for the 

production function specification. 

                                                 
3 Just to name to two most common relationships that are estimated. 
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The next challenge is identifying the inputs. The number of employees is the standard labor 

input and is easily obtained. As for the capital inputs, the options are more complex. Transformer 

capacity is widely accepted as a required variable. However, kilometers of distribution lines, 

which measures the amount of capital in the form of network, can be misleading since it can 

reflect geographical dispersion of consumers rather than differences in productive efficiency 

(Kumbhakar and Hjalmarsson, 1998). Therefore, in a study of relative efficiency differences, 

network capital can either be treated as an output or as input but only after controlling for 

geographical dispersion. In this paper we adopt the second position and hence correct 

appropriately by accounting for consumer density.  

Regarding the environmental variables (variables beyond the firms’ control) to be included 

in the model4, service area is unambiguously an exogenous operating characteristic of the firm’s 

environment. As we argue above, the number of customers served and their distribution is also 

exogenous, so we include not only service area as a control variable, but also customer density. 

The idea is that customer density should capture the effect of demographic features, in the sense 

that higher values of this variable can be expected to enable a firm to deliver more output per unit 

of input. For similar reasons, we need to measure the effect of delivering energy at different 

voltages required by different customers, and therefore we include the proportion of total energy 

delivered that is distributed to residential customers as an additional operating characteristic. 

Finally, the variable GNP per capita is included to control for differences in the socio-economic 

environment in which firms operate in each country. 

                                                 
4 Introducing environmental variables in the production function specification assumes that these variables affect 

technology rather than computed efficiency scores, and generates net efficiency measures. See the discussion in 

Section 3. 
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The particular choice of variables made here follows the general consensus found in the 

current literature. We review this literature in the Appendix. Although comparison of some 

alternative modeling could yield additional insights, we believe that the model chosen is 

reasonably general in terms of the current literature and that the motivation for the choice of 

variables is rather convincing.  

In many cases there are good reasons why some firms do not follow an efficient pattern, but 

once the regulators have done this initial sorting out, the burden of proof should be on the 

regulated companies. That is to say, the initial model used as a yardstick is not so determinant, 

since the firms can impugn the proposed model until every part (firms and regulators) agree about 

the final model –involving themselves in a “learning by doing” iterative process in which both 

firms and regulators learn while playing the game (see Burns and Estache (1998), Rossi and 

Ruzzier, (2000), Coelli, Estache, Perelman and Trijillo (2002)). 

Following the discussion above and the availability of data, the initial model for the 

production function will be: 

 

Initial Model            

Output:    Inputs:     Environmental variables: 

1. Total sales                        1. Number of employees                    1. Service area 

2. Distribution network         2. Customer density  

3. Transformer capacity                                3. Demand structure 

                                                                       4. GNP per capita 

 

The final model will be obtained after testing the statistical significance of the 

environmental variables. The idea is that a frontier model has two parts: the “core” of the model 

and the environmental variables (Rossi and Ruzzier, 2000). In a production function approach the 
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(theoretically determined) core is formed by the inputs, whereas the set of environmental 

variables includes those factors that might influence the firms’ performance and are not directly 

controllable by them. The initial specification for the core of the model is subject to theoretical 

considerations. Environmental variables, on the other hand, are not theoretically determined and 

will only be included in the final model if they are statistically and economically significant. 

 

2. THE DATABASE 

 The sample accounts for 39 electricity distribution companies (23 private, 16 public) 

spread over 10 countries. It is representative of the sector in the region and covers: Argentina (8 

firms, including the two largest firms in terms of number of customers), Bolivia (2), Brazil (2), 

Chile (2), Colombia (2), Ecuador (4), Paraguay (1), Peru (12), Uruguay (1) and Venezuela (5), 

for the period 1994-2000. The only missing countries are the Guyana, French Guyana and 

Suriname. The Brazilian sector is probably underrepresented since we only have data on two 

firms, including the second largest one.  Some details are provided in Table 1.  

 

Table 1: Firms, Countries and Ownership 

Country 
Number of firms covered by the 

sample  

Argentina  5 private, 3 public 
Bolivia  1 private, 1 public 
Brazil 2 public 
Chile 2 private 

Colombia 2 public  
Ecuador 3 private, 1 public 
Paraguay 1 public 

Peru  8 private, 4 public 
Uruguay 1 public 

Venezuela 4 private, 1 public  
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Firm data was collected from several sources. Data for the period 1994-1999 was mostly 

compiled from CIER (Comisión de Integración Eléctrica Regional – Regional Electric Integration 

Commission) reports, “Datos Estadísticos. Empresas Eléctricas. Año 1994”, “Datos Estadísticos. 

Empresas Eléctricas. Años 1995-1996-1997”, “Información Económica y Técnica de Empresas 

Eléctricas. Datos 1998-1999”. Data for Peru was partly compiled from CTE (commission in 

charge of energy tariffs), and data for Argentina in the year 2000 was partly provided by 

ADEERA (an association of distribution companies). For the most recent data, we relied directly 

on firms. When possible, the data was cross-checked and completed using firms’ balance sheets 

(or firms’ web pages), and information provided by regulators and governmental agencies.  

When a particular piece of information was missing, in order not to lose the entire 

observation, some algorithm was used to fill the gap. After eliminating utilities for which data 

quality was insufficient, we obtained an unbalanced panel with 194 observations from the 39 

firms in the period 1994-2000. We only included in our panel firms for which we had at least 

three consecutive observations. 

The following variables are going to be used in the estimations: sales (in GWh, calculated 

as total sales minus sales to other electric companies, in order to isolate the distribution activity in 

the case of integrated firms), number of employees (in vertical integrated firms we use only 

employees in the distribution activity, as informed by the firms), total distribution lines (in 

kilometers), total transformer capacity (in kVA), service area (in square kilometers), residential 

sales’ share (a proxy for demand structure), customer density in the service area (in customers per 

square kilometer), and GNP per capita (in purchasing power parity units, PPP). 

The PPP estimates of GNP per capita for the period 1994-1998 were obtained from the 

World Development Reports 1996-2000. We used PPP figures in order to correct for 

international differences in relative prices (for details, see World Development Reports technical 
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notes). The figures for the years 1999 and 2000 were calculated using the World Development 

Indicators database from the World Bank. The summary statistics are presented in Table 2. In all 

cases the sample size is equal to 194 observations. 

 

Table 2: Summary Statistics 
Variable Sample 

Mean 
Sample 

Standard 
Deviation 

Minimum Maximum 

Sales (in GWh) 3566 6944 31 37777 
Distribution Lines (in km) 21103 55404 443 316997 

Number of Employees 1518 2541 26 12239 
Transformer Capacity (in kVA) 1440 2207 16 9986 

Service Area (in km2 ) 77878 159682 59 823700 
Customer Density 

(in customers per km2) 
117 203 0.31 677 

Residential Sales / Sales (in %) 42 9 17 63 
GNP per capita (in PPP units) 6568 2590 2400 13091 

 

3. THE ESTIMATION PROCEDURES  

To provide a full assessment of the potential value of the information available, we cover as 

wide a spectrum of approaches regulators could adopt with the data available as possible. We 

present both econometric and Data Envelopment Analysis (DEA) estimates to assess the 

efficiency performance of South America’s electricity distribution companies. More specifically, 

we test two parametric models, a stochastic frontier estimated by Maximum Likelihood (ML) and 

a random effects model estimated by Feasible Generalized Least Squares (FGLS), and two non-

parametric DEA (one with variable returns to scale and another with constant returns to scale). 

3.1. The econometric models 

We define the general stochastic frontier production function model by 

ln ( , ; )it it itY f X t β ε= + , 

where itY  denotes output, itX  is a matrix of inputs, t represents time, β  are technological 

parameters to be estimated, and ƒ is some appropriate functional form. The error term is 
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it it itv uε = − , where itv  are assumed independent and identically distributed random errors which 

have normal distribution with mean zero and unknown variance, 2
νσ , and itu  are non-negative 

random variables which represent technical inefficiency. The Battese and Coelli (1992) 

representation [ ]( exp ( ) )it iu t T uη= − − is used for the technical inefficiency term.  

The time term is included to account for technical change. Representing technical change 

by including a time term in the production frontier may seem relatively innocuous but it is in fact 

a very strong assumption and is not always realistic. Many innovations and developments that 

one would like to subsume under the rubric of technical change are not consistent with this 

formulation, which assumes that technical change does not require new inputs and further that the 

production frontier maintains the same basic form as time elapses. However, as many authors 

point out, including a time term in production frontiers may not be perfect, but it is a workable 

alternative with some definitive advantages (i.e., analytical and econometric tractability) over 

some other approaches.5 

The translogarithmic (or translog) and the Cobb-Douglas production functions are the two 

most common functional forms which have been used in empirical studies on production, 

including frontier analyses. The translog is a flexible function, since it is a second-order Taylor 

approximation (in logarithms) to any smooth, continuous function. The Cobb-Douglas production 

frontier is a special case of the translog in which the coefficients of the second order terms are 

zero.  

                                                 
5 Different null hypothesis associated with technical change are analyzed in Rossi (2002). The results show that non 

neutral technical change models or models with quadratic time trend do not differ significantly from the more 

parsimonious model present here. Therefore, in our preferred model we include only a linear time trend. 
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In this paper the most general functional form for the stochastic frontier for electricity 

distribution in South America is a translog production function:  

(1)       
2 2 2

0 1 1 2 2 3 3 1 11 2 22 3 33 1 2 12

1 3 13 2 3 23

ln it it it it it it it it it

it it it it t it i

Y X X X X X X X X
X X X X t u

β β β β β β β β
β β β ν

= + + + + + + +
+ + + + −

    

where Y indicates sales, X1 is the natural logarithm of the number of permanent employees, X2 is 

the natural logarithm of distribution network, and X3 is the natural logarithm of transformer 

capacity.  

The production function above does not include environmental variables. Coelli, Perelman 

and Romano (1999) suggest that the literature offers two alternative approaches to their inclusion. 

One assumes that the environmental factors influence the shape of the technology and hence that 

these factors should be included directly into the production functions as regressors, while the 

other assumes that they directly influence the degree of technical inefficiency. In this study we 

adopt the position of including them as regressors in order to get efficiency measures that are net 

of environmental influences. As pointed out by Coelli, Perelman and Romano (1999), measuring 

net efficiency is an important issue as it allows one to predict how companies would be ranked if 

they were able to operate in equivalent environments. 

Therefore, the most general function to be estimated is as in equation (1) but including four 

additional environmental variables:  

2 2 2
0 1 1 2 2 3 3 1 11 2 22 3 33 1 2 12

1 3 13 2 3 23 1 1 2 2 3 3 4 4

ln it it it it it it it it it

it it it it t A A A A it i

Y X X X X X X X X
X X X X t A A A A u

β β β β β β β β
β β β β β β β ν

= + + + + + + +
+ + + + + + + + −

      

where 1A  is the natural logarithm of demand structure, 2A  is the natural logarithm of customer 

density, 3A  is the natural logarithm of service area, 4A  and is the natural logarithm of GNP per 

capita.  
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As it is now usual in this literature, we use the parameterization proposed by Battese and 

Corra (1977), which uses ( )2 2 2
u uνγ σ σ σ= + .  The program FRONTIER 4.1, developed by T. 

Coelli (1996), is used for the estimations.  

In this paper we take advantage of the great flexibility of this model and we test the half-

normal distribution hypothesis vis a vis the more general truncated normal distribution 

0( : 0)H µ = , and we also contrast the hypothesis that the efficiency is time invariant 0( : 0)H η = . 

Finally, we test the null hypothesis that there are no technical inefficiency effects in the model; 

0 : 0H γ = . As suggested by Coelli (1996), these alternative models are estimated and the 

preferred models are selected using a Likelihood Ratio (LR) test. This test is based on the Log 

Likelihood functions as follows: 

LR = -2[LR - LU], 

where LR is the Log Likelihood of the restricted model and LU is the Log Likelihood of the 

unrestricted model. Asymptotically, the LR statistic has a chi-square distribution with degrees of 

freedom equal to the number of restrictions involved.6 

The ML estimates of the parameters in the unrestricted translog stochastic frontier 

production function (called Model 1) are shown in Table 4. Formal tests of hypothesis associated 

to Model 1 are given in Table 3. The first null 

hypothesis, 0 11 22 33 12 13 23: 0H β β β β β β= = = = = = , that the Cobb-Douglas is an adequate 

representation of the technology is rejected by the data. The second hypothesis, 0 : 0H γ = , which 

                                                 
6 It must be noted that in the case where the null includes the restriction that 0γ =  (a point on the boundary of the 

parameter space), the likelihood ratio statistics will have asymptotic distribution equal to a mixture of chi-square 

distributions 2 2
0 1

1 1

2 2
χ χ+ (Coelli 1993, Lee 1993). 
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specifies that firms are fully efficient is strongly rejected. The null that the inefficiency has a half-

normal distribution, 0 : 0H µ = , cannot be rejected by the data, and therefore in our preferred 

model we work assuming a half-normal distribution for the inefficiency terms. The null 

hypothesis that the technical inefficiency is time invariant, 0 : 0H η = , cannot be rejected. Finally 

we test the significance of the environmental variables. The null hypothesis 

0 1 2 3 4: 0A A A AH β β β β= = = =  is strongly rejected by the data, suggesting that environmental 

variables cannot be omitted in the estimation of production frontiers in this kind of sector. A fact 

which would probably argued for by most operators.  

 
Table 3: Likelihood Ratio Tests 

Null Hypothesis Log Likelihood 2
0.99χ value Test statistic* 

Given Model 1 167.00   

0 11 22 33 12 13 23: 0H β β β β β β= = = = = =
 155.79 12.59 22.41* 

0 : 0H γ =
 17.40 6.25 299.21* 

0 : 0H µ =
 166.66 3.84 0.67 

0 : 0H η =
 166.98 3.84 0.03 

0 1 2 3 4: 0A A A AH β β β β= = = =
 117.27 9.49 99.46* 

*An asterisk on the value of the test statistic indicates that it exceeds the 99th percentile for the corresponding 
2χ distribution and so the null hypothesis is rejected. 

 

The above tests suggest tha t the preferred model (we call it Model 1P) is a translog 

stochastic production function with neutral technical change and time-invariant inefficiency, 

which is assumed distributed as a half-normal. The production function includes demand 

structure, customer density, service area and GNP per capita as environmental variables.  

Since we cannot reject the hypothesis of constant technical efficiency, we can run Model 1P 

as a random effects model (we call it Model 1G). The ML estimates of the unrestricted model 

(Model 1) and the preferred model (Model 1P), and FGLS estimates of the preferred model 

(Model 1G) are shown in Table 4. 
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Table 4: Econometric Results 
Variable Model 1 

 
Standard 

Errors 
Model 1P 

 
Standard 

Errors 
Model 1G 

 
Standard 

Errors 
Constant -4.861 1.393 -5.914 1.205 -5.223 1.550 

Ln Employee  -0.386 0.219 -0.388 0.211 -0.346 0.240 
Ln Net 0.328 0.288 0.171 0.269 0.210 0.323 

Ln Capacity 0.162 0.230 0.357 0.220 0.179 0.265 
(ln Employee)2  0.029 0.025 0.043 0.023 0.014 0.026 

(ln Net)2 -0.012 0.022 0.001 0.023 -0.011 0.026 
(ln Capacity)2 0.156 0.030 0.156 0.032 0.145 0.032 

Ln Employee × ln Net  0.095 0.034 0.091 0.031 0.102 0.039 
Ln Employee × ln 

Capacity -0.129 0.047 -0.146 0.047 -0.118 0.054 
Ln Net × ln Capacity -0.108 0.036 -0.120 0.035 -0.102 0.039 
Ln Demand Structure -0.517 0.061 -0.511 0.060 -0.536 0.064 
Ln Customer Density 0.725 0.091 0.763 0.065 0.781 0.082 

Ln Service Area 0.695 0.086 0.726 0.059 0.744 0.086 
Ln GNP per capita 0.105 0.091 0.180 0.072 0.057 0.092 

Time 0.016 0.009 0.013 0.005 0.014 0.005 
γ  0.982 0.013 0.987 0.005   
µ  0.495 0.157     
η  -0.003 0.013     

Average Efficiency 0.578  0.657  0.564  
 

Since the coefficients of the translog production functions do not have any direct 

interpretation, we calculate the elasticities of output with respect to each of the inputs 

corresponding to models above  

2it
k k kk kit kj jit

j kk

Y
EL X X

X
β β β

≠

∂
= = + +

∂ ∑ , 1,2,3; 1,2,3k j= = . 

In general, returns to scale is calculated from the sum of the input elasticities as 

k
k

RTS EL= ∑ .  

However, it is sometimes noted that when the model includes environmental variables 

related to scale (such as service area), the scale elasticity is given by the proportionate effect on 

production of changes in the input variables and these environmental variables. The main point is 

that changing the scale of a firm would involve changing not only the inputs but also all of these 

characteristics (Burns and Weyman-Jones, 1994). Given customer density, demand structure and 
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the socio-economic conditions, returns to scale should be defined as relating the change in output 

to a change in all inputs and service area. That is,  

3k A
k

RTS EL β= +∑ .  

The following table shows input elastic ities, service area elasticity and returns to scale for 

both preferred models, Model 1P and Model 1G. Input elasticities are calculated at the sample 

means values (the Taylor series expansion points). 

Table 5: Elasticities and Returns to Scale 
 Elasticity with respect to  

Model Employees KM of 
network 

Transformer 
Capacity 

Service Area Returns to 
scale 

Model 1P 0.08 -0.01 0.36 0.73 1.15* 
Model 1G 0.02 -0.01 0.40 0.74 1.16* 

*Reject the null of constant returns to scale at a 5% level. 
 

Elasticities with respect to service area and transformer capacity are positive and quite 

comparable across models. However, we cannot reject the null that labor and network elasticity 

are equal to zero in both models. As expected, in both models returns to scale are significantly 

greater than one.  

The estimated coefficients of the environmental variables have the expected signs. The 

negative influence of demand structure implies that firms with a lower proportion of residential 

customers benefit from a more favorable environment and hence perform better when no attempt 

is made to take into account this advantage. Customer density has a positive effect on output, 

which means that as the number of customers per square kilometer rises (ceteris paribus), energy 

delivered will consequently go up. Service area has also a positive sign, since given customer 

density it is playing an input role. Finally, the positive coefficient of GNP per capita suggests that 

firms operating in countries with high GNP per capita benefit from a more favorable socio-

economic environment.  
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The annual rate of technical change is 1.3 percent in Model 1P and 1.4 percent in Model 

1G. Finally, average efficiency is around 66 percent in Model 1P, and around 56 percent in 

Model 1G. These results suggest that the re is scope for efficiency improving for the average firm 

in the sample. 

3.2. The DEA estimates 

In order to allow for the comparison of the results, we used the same model as in the last 

section to perform the nonparametric estimation, i.e. we have a model with only one output (total 

sales), three inputs (labor, km of distribution lines and transformer capacity), and four 

environmental variables (service area, customer density in the service area, a proxy for demand 

structure and GNP per capita). The orientation chosen is to the proportional augmentation in 

output achievable by a firm while maintaining the level of inputs, for this is consistent with the 

interpretation of the econometric results.   

There exist basically two alternative assumptions about the returns to scale: constant 

returns to scale (DEA-C) and variable returns to scale (DEA-V). The theoretical specification of 

the DEA-C model consists in an optimization problem subject to constraints, like the following: 

λmax  

tos.   .,,, nRzezExzXzUu +∈≤≤≤λ  

This problem gives as a solution the proportion (λ) in which the observed outputs of the 

firm being analyzed could be expanded if the firm were efficient. U is a n*r matrix of outputs of 

the firms in the sample (n denoting the number of firms and r the number of outputs). X is a n*m 

matrix of inputs of the sample firms (m indexing considered inputs). E is a n*s matrix containing 

all the information about s environmental variables of the n firms. u, x and e are the observed 

output, input and environmental variables vectors, respectively, of the firm under evaluation. 
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Finally, z is a vector of intensity parameters (z1, z2, ..., zn) that allows for the convex combination 

of the observed inputs and outputs (in order to build the envelopment surface). 

To obtain the second model, DEA-V, it suffices to add the following constraint to the above 

problem (Seiford and Thrall, 1990): 

.1
1

=∑
=

n

i
iz  

Though model DEA-V would be a desirable choice, since it does not restrict returns to 

scale to be constant (hypothesis rejected in the econometric setting), we nevertheless compute 

also model DEA-C, given that quite often in the case of models with variable returns to scale the 

smallest and low-productive units (in terms of partial productivities) show up as fully efficient 

just because they lack comparators. We chose to model environmental variables as non-

discretionary inputs (see Coelli, Prasada Rao and Battese, 1998). In this fashion, each firm is only 

evaluated against a hypothe tical firm which has an environment (which cannot be altered by the 

firm) that is not better than that of the firm under evaluation. As a drawback, this modeling 

choice implies an a priori judgment on the direction of influence of each environmental variable 

upon efficiency. This judgment was made on the basis of the econometric results shown in Table 

4.7  

Since we have panel data, several possibilities arise within the context of DEA. One of 

them is to compute a frontier for each period (seven cross-section analyses) and to compare these 

cross-sectional runs. In this way, one constructs a frontier in each year and calculate the 

efficiency of each firm relative to the frontier in each period. Another possibility is to treat the 

panel as a single cross-section (each firm in each period being considered as an independent 

                                                 
7 Since one variable (demand structure) has a negative impact on production, we inverted it prior to inclusion, instead 

of treating the variable as a non-discretionary “output”. See Coelli, Prasada Rao and Battese (1998). 
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observation), pooling the observations altogether. Under this approach, a single frontier is 

computed, and the relative efficiency of each firm in each period is calculated by reference to this  

single frontier. An intermediate alternative would be the window analysis approach proposed by 

Charnes et al. (1985).8 The choice of width for the windows poses an additional complication, 

since it is entirely ad hoc, and “currently determined by trial and error” (Charnes et al., 1994, 

p.60). In this study, we try treating the panel as a single cross-section under two different 

assumptions concerning returns to scale –variable (Model DEA-V) and constant (Model DEA-C), 

and calculate averages of the efficiency scores of each firm. 9 

 

4. CONSISTENCY OF THE RESULTS 

To ensure comparability between the various approaches, the four techniques used the same 

efficiency concept (technical efficiency), the same sample of firms (unbalanced panel of 39 firms 

for the period 1994-2000, 194 observations), equal specifications of inputs (employees, 

kilometers of distribution lines and transformer capacity), environmental variables (service area, 

customer density, demand structure and GNP per capita) and output (total sales). 

Section 3 made it clear that the main problem faced by regulators willing to apply frontier 

studies is the variety of options at hand. The problem is particularly serious if the different 

approaches give mutually inconsistent results. In an attempt to establish the conditions under 

which frontier methodologies are most useful to regulatory authorities, Bauer et al. (1998) 

propose a set of consistency conditions which, if met, would avoid the choice between 

                                                 
8 The first two possibilities can be thought of as special cases of the window analysis: in the first case, window width 

is equal to 1, and in the second, it is equal to the total number of periods. 

9 We programmed the optimization problem in GAMS Version 1.0.4, and used the MINOS5 solver for the 

computations. 
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approaches. The efficiency measures generated by the different techniques should show internal 

and external consistency; they should (i) be consistent in their efficiency levels, rankings and 

identification of the best and the worst performers, and (ii) be consistent over time.  

Broadly speaking, the first conditions determine the degree to which the different 

approaches are mutually consistent (internal consistency), whereas the remaining condition 

establishes the degree to which the different efficiency measures are consistent with reality 

(external consistency). The first conditions say if the different approaches will give the same 

answers to the regulators, while the last condition says if it is likely that these answers are correct. 

To see what this means in practice, we focus on its implication in the context of price cap 

regulation. The main purpose of a switch from rate of return regulation to price cap regulation has 

been to increase the incentive for firms to minimize their costs and to ensure that eventually users 

will benefit from these reductions in costs—typically within 3-5 years after a regulatory review. 

The adoption of price cap regulation is one of the main reasons for this increase in the efforts to 

measure efficiency in regulated sectors. Indeed the observed cost reductions would be associated 

with efficiency gains, which have to be measured. Efficiency measures are no longer a sideshow 

as they were under rate of return regulation.  

The initial regulatory challenge at the time of a price review is the following. If the 

productivity gain used to assess the new price cap is specific to the firm and based on gains 

achieved by this firm in the past, this firm will not have strong incentives to improve efficiency to 

cut costs because this would result in a lower price cap. An alternative for the regulator would be 

to measure efficiency gains by relying on factors that are not under the control of the regulated 

firm. But in that situation, if the regulator has very little knowledge of the past costs of the firm 

and bases its measure of efficiency gain on, for instance, the productivity gains in a related sector 

in the economy, some perverse effects may penalize the firm. This is why the suggestion to rely 
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on yardstick competition should be so tempting for regulators. Price can be set for an industry 

based on the aggregate industry performance. For instance, the price cap can be based on the 

average unit cost in the industry rather than on the firm specific average unit cost and this gives a 

strong incentive to the firm to have a unit cost below average. In this context, efficiency measures 

are inputs in the regulatory mechanism in an even more direct way than under rate of return 

regulation. 

If a firm has an efficiency index of 0.8 for instance, it means that it could produce the same 

level of output at 80% of its current costs (cost function approach) or produce the same level of 

output using an 80% of its current inputs (production function approach). This means that the cap 

should be based on 80% of current cost, not 100%. With this approach, only the firms reaching 

100% of efficiency would be allowed to recover their opportunity cost of capital while the others 

would have lower rates of return. 

The implementation of such a mechanism, however, requires that at the minimum the first 

consistency condition is met (consistency in efficiency levels). If this is not met, this mechanism 

should not be applied since the individual efficiency measures would be somewhat subjective and 

hence unreliable. Table 6 presents the main characteristics of the distributions  generated by the 

four methodologies tested. 

The Kruskal-Wallis (nonparametric) test was carried out to contrast the null hypothesis that 

the four techniques generate the same distribution of efficiency scores, and we do reject the null 

at a level of significance of 1%.10 That is, this consistency condition is not met. This result is not 

particular to our sample, but rather general in the applied literature, and it could help in 

                                                 
10 We used EViews Version 3.0 to perform the test. 
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explaining why regulators tend not to translate efficiency measures one-for-one into X factors or 

expected cost reductions. 

Table 6: Comparison of the Distributions of Efficiency Measures Across Methods  
Approach ML FGLS DEA-V DEA-C 

Mean 0.657 0.564 0.966 0.873 
Median 0.659 0.567 0.998 0.929 

Deviation 0.194 0.195 0.080 0.153 
Maximu m 0.978 1.000 1.000 1.000 
Minimum 0.327 0.258 0.594 0.490 
Sample 39 39 39 39 

 

If the levels of efficiency are not consistent across the different methods of frontier 

estimation, it is still possible that these methods generate similar rankings of firms by their 

efficiency scores. Identifying the ranking would help to discriminate the X factor among the 

firms in the sector. 

Table 7 shows Spearman’s ranking correlation between pairs of techniques.11 All the 

correlations between pairs of approaches are positive and significantly different from zero at the 

usual levels of confidence (the null hypothesis of zero correlation is rejected). The correlations 

are particularly high between nonparametric models (Spearman’s ranking correlation between 

DEA-V and DEA-C is 0.723, which is significantly different from zero at 1%) and between 

parametric techniques (Spearman’s ranking correlation between ML and FGLS is 0.943, which is 

also significantly different from zero). Therefore, there is evidence that the methodologies are 

consistent under this condition. 

Table 7: Spearman’s Ranking Correlation Between Pairs of Techniques 
Approach ML FGLS DEA-V DEA-C 

ML 1.000 0.943 0.340 0.582 
FGLS  1.000 0.345 0.539 

DEA-V   1.000 0.723 
DEA-C    1.000 

                                                 
11 We used Intercooled Stata 7.0 for Windows 98/95/NT to compute the correlations. 
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If consistency in efficiency levels and rankings is not met, but consistency in identifying 

best and worst performers is, it would still be possible to discriminate the X factor among groups 

of firms in the sector. Indeed, identifying the rough ordering of firms is usually more important 

for regulatory policy decisions than measuring the level of efficiency or the efficiency rankings. 

The upper triangle of the matrix displayed in Table 8 shows, for each pair of techniques, the 

fraction of firms that both simultaneously classified in the upper quartile (10 firms). The lower 

triangle of the matrix shows the same for the case of the lower quartile (10 firms).12  

 
Table 8: Consistency in Identifying Best and Worst Performers  

Approach ML FGLS DEA-V DEA-C 
ML  0.90 0.40 0.50 

FGLS 0.90  0.40 0.50 
DEA-V 0.50 0.50  0.80 
DEA-C 0.70 0.70 0.50  

 

Overall, these results appear to imply that the top and bottom performers can reasonably be 

identified by any of the methods and hence the third condition for robustness of the results is 

being met. The advantage of knowing if the different approaches are consistent in identifying 

“best” or “worst” firms is that, even if the first two consistency test fail, a “mild” form of 

benchmark regulation can be relied on. This is somehow what the water regulator for England 

and Wales does when it publishes the efficiency rankings in the media to increase public pressure 

on the regulated companies. The idea is to inform the users and allow them to compare prices and 

services across regions and give them an instrument to put pressure on their own operator if it is 

not performing well. 

                                                 
12 It is worth mentioning that if these fractions were purely random, they would be expected to be around 25%.  
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We now turn to external consistency and determine the year-to-year stability of DEA-V and 

DEA-C efficiency estimates over time. We do not include the econometric approaches because 

we tested whether efficiency was constant over time and were not able to reject this hypothesis. 

We calculated the correlations for the time-varying efficiency measures between each pair of 

years. That is, for both DEA models, we computed the correlation between DEA efficiency 

measures in year i, i = 1994, ..., 1999, and the efficiency scores in year j, j = 1995, …, 2000, with 

j > i to avoid redundancy. Table 9 presents the average correlations by the number of years apart. 

In general, the n-year apart figures are averages of the 7-n correlations between efficiencies that 

are n years away from each other.  

 

Table 9: Correlations Between DEA Efficiency Measures 
Approach 1 year apart 2 year apart 3 year apart 4 year apart 5 year apart 6 year apart 

DEA-V 0.836 0.647 0.564 0.536 0.639 0.629 
DEA-C 0.750 0.607 0.574 0.677 0.865 0.702 
 

The correlations are high and statistically significant over all the available lags, suggesting 

that the efficiency scores of the DEA-V and DEA-C models are stable over time and giving 

additional support to the result of no efficiency change obtained with the parametric techniques 

used here. 

 

5. CONCLUSIONS 

The most important result of this paper has been to show that yardstick or benchmark 

competition organized around measures of technical efficiency is possible, at least in a mild form. 

This is not to say that the operators will not complain and question not only the results but also 

the methodologies. But this is normal. Regulation amounts to a game played between regulators 

and operators, most of the time, with the purpose of allocating the rent generated by the regulated 
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monopolistic business between operators, users and the government. Too often in the past the 

game has been biased in favor of firms since they control much of the information. This implies 

that too often the efficiency gains actually achieved through restructuring and competition for the 

market have not been shared with the final users. 

 This approach levels the playing field by providing the regulator in each country with an 

instrument that reduces the information asymmetry. By allowing the regulator to propose its own 

estimate of the rent to be distributed based on the best practice defined by the performance of the 

top 5 or 10 firms, the approach proposed here forces the regulated firms unhappy with the 

regulator’s assessment to reveal more information than it otherwise would.  

A necessary condition for this form of competition to work is for regulators to coordinate 

with the other regulators in the region in a much more focused way than they have done in the 

past. For this sector and for most countries, the performance comparison can only be 

international. The more comparable across countries the information is, the more effective is this 

form of competition and the easier it is for each individual regulator to rely on useful results in its 

own regulatory settings. 
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APPENDIX 

The applied literature is a good starting point in the identification of the variables to be 

included in the model. In the following table we summarize previous works found in the applied 

literature, highlighting the specification used (cost vs. production), the estimation technique  

(econometrics vs. mathematical programming), the outputs, the inputs and the environmental 

variables chosen. 

Table A.1 
Summary of Previous Studies  

Author/s 
Specification/
Estimation Output/s Inputs13 Environmental Variables 

Neuberg, 
1977 

Cost function, 
Econometrics 

Customers  Capital, labor MWh sold, KM of 
distribution line, service area 

Huettner and 
Landon, 1977 

Cost function, 
Econometrics 

Total capacity, 
average demand 
as a ratio of 
maximum 
capacity 

Labor Line transformers per 
customer, residential, 
commercial and industrial 
sales per customer, and a set 
of dummy variables 

Roberts, 
1986 

Cost function, 
Econometrics 

High and low 
voltage 
deliveries, 
serviced area, 
customers 

KWh input, capital 
(transmission and 
distribution), labor 

 

Nelson and 
Primeaux, 
1988 

Cost function, 
Econometrics 

Number of 
customers 

Lines, Labor City size, a dummy variable 
for the nature of the 
competitive environment 

New Zealand 
Ministry of 
Energy, 1989 

Cost function, 
Econometrics 

Electricity 
distributed 

Labor, capital, electricity 
purchased and “other” 

 

Weyman-
Jones, 1991 

Production 
approach, 
DEA 

Residential, 
commercial and 
industrial sales 

Labor, mains 
distribution 

 

Weyman-
Jones, 1992 

Production 
approach, 
DEA 

Residential, 
commercial and 
industrial sales, 
maximum 
demand 

Labor, network size, 
transformer capacity 

 

Weyman-
Jones, 1992 

Production 
approach, 
DEA 

Customers  Labor Network size, transformer 
capacity, total sales, 
maximum demand, 
population density, industrial 
share in sales 

Hjalmarsson 
and 
Veiderpass, 

Production 
approach, 
DEA 

High and low 
voltage output 
(MWh), high and 

Labor, high and low 
voltage lines, 
transformer capacity 

 

                                                 
13 In cost approaches, inputs  prices are used in the models instead of input quantities. 
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Author/s 
Specification/
Estimation Output/s Inputs13 Environmental Variables 

1992a,b low voltage 
customers 

Hougaard, 
1994 

DEA Length of power 
lines, total power 
deliveries, 
number of 
customers 

Labor, operating 
expenses, operating 
capital, transmission 
losses  

 

Salvanes and 
Tjøtta, 1994 

Cost function, 
econometrics 

GWh produced, 
number of 
customers 

Labor, purchased 
electricity 

Load factor, topography, 
climate, dummy rural area 

Kittelsen, 
1994 

DEA Length of power 
lines, total power 
deliveries, 
number of 
customers 

Labor, transmission 
losses, external services 
bought 

 

Burns and 
Weyman-
Jones, 1994 

Production 
approach, 
DEA 

Customers, 
domestic, 
commercial and 
industrial sales, 
maximum 
demand 

Labor, distribution 
network, transformer 
capacity 

Consumer density, market 
structure 

Pollitt, 1995 Cost function, 
Econometrics 

Sales per 
customer, ratio 
maximum to 
average demand, 
Customers 

Labor % of residential sales, 
overground and underground 
distribution circuits, 
transformer capacity, service 
area, and a set of dummy 
variables 

Pollitt, 1995 Production 
approach, 
DEA 

Customers , 
residential sales, 
non-residential 
sales, service 
area, maximum 
demand 

Number of employees, 
transformer capacity, 
circuit kilometers 

 

Bagdadioglu, 
Waddams 
Price and 
Weyman-
Jones, 1996 

DEA Customers, 
electricity 
supplied, 
maximum 
demand, service 
area 

Labor, transformer 
capacity, network size, 
network losses, general 
expenses  

 

Burns and 
Weyman-
Jones, 1996 

Cost function, 
Econometrics 

Customers  Labor, capital Maximum demand, service 
area, consumer density, kWh 
sold, market structure,14 
kilometers of mains line, 
transformer capacity 

Thompson, 
1997 

Cost function High and low 
voltage sales 

Labor (transmission and 
distribution), power, 
capital (transmission and 
distribution plants) 

Service area, number of 
customers 

Zhang and 
Bartels, 1998 

DEA Total number of 
customers 

Transformer capacity, 
labor, total km of 
distribution lines 

 

                                                 
14 Market structure is defined as the share of industrial energy delivered in total energy delivered. 
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Author/s 
Specification/
Estimation Output/s Inputs13 Environmental Variables 

Førsund and 
Kittelsen, 
1998 

DEA Distance index,  
customers, total 
energy delivered 

Labor, energy loss, 
materials, capital 

 

Filippini, 
1998 

Cost function, 
econometrics 

KWh delivered, 
number of 
customers 

Labor, capital, 
purchased power 

Load factor, service area 

Kumbhakar 
and 
Hjalmarsson, 
1998 

Production 
approach, 
DEA and 
Econometrics 

High and low 
voltage 
customers, high 
and low voltage 
energy sold 

Labor, transformer 
capacity, kilometers of 
low and high voltage 
lines 

 

Scarsi, 1999 Production 
approach, 
DEA 

Energy delivered 
to final 
customers, 
number of 
customers 

Labor, kilometers of 
distribution lines 

 

Scarsi, 1999 Production 
function, 
econometrics 

Energy delivered 
to final 
customers 

Labor, kilometers of 
distribution lines 

Customer density and a set of 
dummy variables 

Scarsi, 1999 
 

Cost function, 
Econometrics 

GWh sold, 
customers  

Capital, labor, materials  Customer density, demand 
structure, % of third-party 
services, % of overhead low-
voltage lines, % of primary 
substations, and a set of 
dummy variables 

Kittelsen, 
1999 

Cost 
approach, 
DEA 
 

Energy delivered, 
customers, line 
length 1-24 kV 

Labor, energy loss, 
transformers, lines, 
goods and services. 

 

DTe, 2000 Cost 
efficiency, 
DEA 

Units distributed, 
small customer 
numbers, large 
customer 
numbers, 
network length, 
transformer 
numbers, 
network density  

Operating expenditures  

Grifell-Tatjé 
and Knox 
Lovell, 2000 

DEA 
 

Low, medium 
and high voltage 
customers, area, 
low, medium and 
high voltage 
sales, service 
reliability 

Low, medium and high 
voltage lines, substation 
transformer capacity 

 

Langset, 
2000 

DEA Energy Supplied 
(high and low 
voltage), number 
of customers 
(high and low 
voltage), length 
of lines (by kV) 

Labor, energy losses, 
capital, goods and 
services. 

 

Jamasb and Econometrics Energy delivered, Controllable operating Distribution losses, number 
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Author/s 
Specification/
Estimation Output/s Inputs13 Environmental Variables 

Pollitt, 2001 and DEA, cost 
function 

number of 
customers 
(residential and 
non-residential), 
length of network 
(overhead and 
underground 
cables) 

expenditures, capital 
expenditures 

of transformers 

Filippini and 
Wild, 2001 

Cost function, 
econometrics  

KWh transported 
on the medium-
voltage grid 

Labor, capital Customer structure, load 
factor, customer density, 
average consumption, share 
of agricultural, forest and 
unproductive land, other 
revenues, dummy high-
voltage  
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